Sulfonylurea for the treatment of neonatal diabetes owing to KATP-channel mutations: a systematic review and meta-analysis

نویسندگان

  • Hongliang Zhang
  • Xiaobin Zhong
  • Zhenguang Huang
  • Chun Huang
  • Taotao Liu
  • Yue Qiu
چکیده

The effect of sulfonylurea for the treatment of neonatal diabetes (NDM) is remain uncertain. We conducted this systematic review and meta-analysis to investigate the effect of sulfonylurea for NDM and to provide the latest and most convincing evidence for developing clinical practice guidelines of NDM. A literature review was performed to identify all published studies reporting the sulfonylurea on the treatment of neonatal diabetes. The search included the following databases: PUBMED, EMBASE and the Cochrane Library. The primary outcome was the success rates of treatment, change of glycosylated hemoglobin (HbA1c) and C-peptide. Data results were pooled by using MetaAnalyst with a random-effects model. Ten studies (6 cohort studies and 4 cross-sectional studies) involving 285 participants were included in the analysis. The pooled estimated success rate by the random-effects model was 90.1%(95% CI: 85.1%-93.5%). HbA1c had a significantly lower compared with before treatment. The pooled estimate of MD was -2.289, and the 95% CI was -2.790 to -1.789 (P < 0.001). The subgroup analysis showed a similar result for cohort studies and in cross-sectional studies. The common mild side effect is gastrointestinal reaction. The present meta-analysis suggested that sulfonylurea had a positive effect for treatment NDM due to KATP channel mutations. In addition, sulfonylurea also displayed sound safety except the mild gastrointestinal reaction. However, the findings rely chiefly on data from observational studies. Further well-conducted trials are required to assess sulfonylurea for NDM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KATP Channel Mutations and Neonatal Diabetes

Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a ...

متن کامل

Neonatal Diabetes and the KATP Channel: From Mutation to Therapy

Activating mutations in one of the two subunits of the ATP-sensitive potassium (KATP) channel cause neonatal diabetes (ND). This may be either transient or permanent and, in approximately 20% of patients, is associated with neurodevelopmental delay. In most patients, switching from insulin to oral sulfonylurea therapy improves glycemic control and ameliorates some of the neurological disabiliti...

متن کامل

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...

متن کامل

Neonatal Diabetes Caused by Activating Mutations in the Sulphonylurea Receptor

Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in pancreatic β-cells play a crucial role in insulin secretion and glucose homeostasis. These channels are composed of two subunits: a pore-forming subunit (Kir6.2) and a regulatory subunit (sulphonylurea receptor-1). Recent studies identified large number of gain of function mutations in the regulatory subunit of the channel whic...

متن کامل

Permanent neonatal diabetes by a new mutation in KCNJ11: unsuccessful switch to sulfonylurea.

Permanent neonatal diabetes (PNDM) can result from activating heterozygous mutations in KCNJ11 gene, encoding the Kir6.2 subunit of the pancreatic ATP-sensitive potassium channels (KATP). Sulfonylureas promote KATP closure and stimulate insulin secretion, being an alternative therapy in PNDM, instead of insulin. Male, 20 years old, diagnosed with diabetes at 3 months of age. The genetic study i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017